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1 Introduction and summary

Defining the thermodynamic entropy of a black hole in a quantum theory of gravity —

even in principle — is an interesting open problem. Any candidate formula should take

into account the quantum fluctuations of matter and gravity and reduce to the Bekenstein-

Hawking formula in the classical, large horizon area limit. Ultraviolet fluctuations can

be incorporated by applying Wald’s generalization of the Bekenstein-Hawking formula us-

ing the Wilsonian quantum effective action, but infrared fluctuations need an extra pre-

scription. Such a proposal, called the quantum entropy function, has been put forward

recently [1] for the case of charged extremal black holes in any number of dimensions.

This proposal relies on the near-horizon geometry of an extremal black hole being

AdS2 (or rather, a patch of global AdS2 known as the AdS2 black hole [2, 3]) times a

compact manifold M . The quantum entropy function d(qi) is a Euclidean path integral

over asymptotically AdS2 field configurations with fixed electric charge qi, fixed value of

the scalar fields at infinity, and a Wilson line insertion. The functional integral runs

over all fields in the dimensionally reduced two-dimensional field theory. The proposal

comes with a specific prescription for dealing with the infrared divergence due to the

infinite volume of AdS space. The ultraviolet divergences of Einstein gravity in d ≥ 3 are

– 1 –



J
H
E
P
0
9
(
2
0
0
9
)
0
2
2

assumed to be resolved by some ultraviolet completion such as string theory; they translate

into the existence of an infinite number of massive fields in two dimensions, irrelevant at

low energies.

The Euclidean path integral is dominated by the field configuration corresponding

to pure AdS2, but there are in general other saddle points approaching AdS2 asymptoti-

cally, and leading to exponentially suppressed contributions. These saddle points do not

necessarily correspond to smooth geometries, but may include (e.g. orbifold) singularities

allowed by the UV completion. A proposal for including such orbifolds has been made

in [4, 5].

In this work, we explain and refine this construction in the case where the AdS2 black

hole is the “very near horizon” limit [2, 3] of a BTZ black hole in AdS3, which could itself

be embedded in a larger asymptotically flat space. We further test this understanding in

the case of N = 4 dyons in 4 dimensions, where the exact degeneracies are captured by a

certain Siegel modular form. We compute the contributions to the dyon degeneracies from

arbitrary poles in the Siegel upper half plane, and find agreement with the classical action

of the SL(2, Z) family of AdS3 black holes. Finally, we relate the sum over poles to the

Farey tail expansion of a certain Jacobi form, which should arise as the modified elliptic

genus of the superconformal field theory dual to N = 4 dyons.

The existence of an intermediate AdS3 region requires that the black hole arises as a

black string winding around an extra circle. This includes most of the examples in string

theory where the microscopic origin of the black hole entropy has been understood [6, 7].

In this case the geometry which dominates the Euclidean path integral asymptotes to

AdS2 × S1 × M̃ with M̃ a compact manifold. The circle S1 is non-trivially fibered over

AdS2 so as to produce a constant field strength after Kaluza-Klein reduction. An infinite

family of saddle points, labelled by two relatively prime integers (c, d) with 1 ≤ d < c can

then be constructed as follows: consider an Z/cZ orbifold of the dominant saddle point,

where the cyclic generator acts as a 2π/c rotation in Euclidean AdS2, accompanied by a

translation of angle 2πd/c along the circle S1. When c > 1 and 1 ≤ c < d, the resulting

geometry is smooth, and gives a subleading contribution of order

exp

(S0

c
+ 2πi q

d

c

)

(1.1)

to the quantum entropy function, where S0 is the contribution of the dominant configura-

tion with (c, d) = (1, 0), equal to the Bekenstein-Hawking-Wald macroscopic entropy, and

q is the momentum on the circle S1.

In the language of the parent AdS3, these geometries are the extremal limit1 of the

Γ∞\SL(2, Z)/Γ∞ family of AdS3 black holes discussed in [2, 8, 9]. The geometry of thermal

AdS3 is a solid torus, and the various solutions correspond to all possible ways of filling

in the boundary torus with a three-dimensional smooth manifold of constant negative

1One has to be careful in taking this limit. The boundary torus of Euclidean AdS3 has a complex

structure modulus τ . Upon zooming into the very-near-horizon region of the Euclideanized extremal BTZ

black hole, one gets another torus with complex structure (τ → 0, τ̄ → ∞), which does not admit any real

sections. We discuss this in section § 3.
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curvature. The two integers (c, d) label the unique cycle of the boundary torus which

becomes contractible in the bulk.

In the present case, the mass (or angular momentum) of the BTZ black hole is fixed.

The family of AdS3 solutions that contribute to the entropy function therefore have asymp-

totic complex structure varying as a function of (c, d). From the point of view of the mi-

croscopic theory, the AdS3 path integral corresponds to the canonical partition function

keeping the electric potential fixed. The AdS2 path integral corresponds to the microcanon-

ical ensemble with fixed electric charge. Going from one to the other involves summing over

states with different charges, or summing over different boundary conditions; the former is

the original AdS3 Farey tail, and the latter is what we discuss in this paper.

Subleading corrections of order (1.1) have been encountered in a recent analysis of the

exact microscopic degeneracies of N = 4 dyons [4]. There is now overwhelming evidence

that the latter are encoded as Fourier coefficients of certain Siegel modular forms [10–17].

The saddle points in the semi-classical expansion of the Fourier coefficients at large charges

are labelled by five integers (m1,m2, j, n1, n2), transforming linearly as the 5-dimensional

representation of Sp(2, Z). For n2 = 1, the saddle point contribution exp(S0) reproduces

the Bekenstein-Hawking-Wald entropy S0, including R2-type quantum corrections to the

four-dimensional low energy effective action. For n2 > 1, the saddle point contributes a

subleading correction of order [4]

exp

[S0

n2
+

2πi

n2

(

n1
Q2

2
− j

2
(P · Q) − m1 P 2

2

)]

, (1.2)

precisely2 of the form (1.1). Moreover, the partition function Zm(ρ, v) at fixed magnetic

charge P 2/2 and fixed potentials (ρ, v) conjugate to (Q2/2, P · Q) can be obtained by

summing over all poles with 0 ≤ m1 < n2. This provides a Poincaré series representation

of the Jacobi form Zm(ρ, v) which is very similar to the Farey tail expansion, and hints

at some intriguing relation between the Fourier coefficients of the elliptic genus of K3 and

those of the Dedekind function. At any rate, this Farey tail-type expansion supports the

existence of an effective black string description for any charges, and therefore the existence

of an intermediate AdS3 region.

The rest of this note is organized as follows. In section 2, we review the quantum

entropy formalism of [1]. In section 3, focusing on extremal black holes with an intermediate

AdS3 region we construct an infinite family of solutions which are asymptotic to AdS2, and

lift to the extremal limit of the Γ∞\Γ/Γ∞ family of AdS3 black holes familiar from the

black hole “Farey tail”. In section 4, we proceed to analyze the exponentially suppressed

corrections to degeneracies of N = 4 dyons, and derive a “Farey tale” representation of

the black hole partition function as a sum over poles in the Siegel upper half plane. The

mathematically oriented reader may skip directly to section 4.

2In the D1 − D5 − P − KKM duality frame, the quadratic combinations become Q2/2 = q, P · Q =

l, P 2/2 = Q1Q5, where q is the momentum along the circle S1 discussed above and l is the momentum

around a different circle inside M̃ .

– 3 –
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2 Review of the quantum entropy function formalism

The quantum entropy function [1] generalizes the Wald entropy formula to include non-

local quantum corrections in a consistent quantum theory of gravity such as string theory.

It is formulated for extremal black holes, whose near horizon geometry is AdS2 ×M where

M is a compact manifold. The higher dimensional theory is written as a two-dimensional

theory with a generally infinite set of fields, including the 2D metric, gauge fields Ai with

field strengths F i and matter fields φa governing the shape of M . The magnetic charges

in higher dimension appear as fluxes on M , and generate a potential for the scalars φa as

well as theta-angle couplings for the field strengths F i. There are also higher-derivative

contributions to the two-dimensional Lagrangian, induced by ultraviolet fluctuations in

higher dimensions above the Wilsonian cut-off.

The most general near horizon field configuration consistent with the SL(2, R) symme-

try of AdS2 is:

ds2 = v

[

−(r2 − 1)du2 +
dr2

r2 − 1

]

, F i = eidr ∧ du , φa(u, r) = φa0 . (2.1)

where v, ei and φa0 are constants. This is the metric of an AdS2 black hole [2, 3] with

horizon at r = 1. It is locally isometric to AdS2 and the region r > 1 covers a triangular

wedge extending halfway from the boundary into global AdS2 [3].

An analytic continuation u → −iuE leads to the Euclidean metric

ds2 = v

[

(r2 − 1)du2
E +

dr2

r2 − 1

]

, F i = −i eidr ∧ duE, φa(uE , r) = φa0 . (2.2)

This metric is non-singular at the erstwhile horizon r2 = 1 provided the Euclidean time

coordinate uE is periodic modulo 2π. In the gauge Ai
r = 0, the gauge fields are given by

Ai = −i ei(r − 1)duE , (2.3)

where the constant term ensures that the Wilson line
∮

S1 Ai around the thermal circle

vanishes at the horizon r = 1. This is needed for regularity since the thermal circle

contracts to zero size.

The quantum entropy function is defined as a functional integral over all field configu-

rations which asymptote to the AdS2 Euclidean black hole (2.2). Specifically, one requires

the fall-off conditions [18]

ds2
0 = v

[

(

r2 + O(1)
)

du2
E +

dr2

r2 + O(1)

]

,

φa = φa0 + O(1/r) , Ai = −i ei(r −O(1))duE ,

(2.4)

which are invariant under an action of the Virasoro algebra. In particular, in contrast to

higher dimensional instances of the AdS/CFT correspondence, the mode of the gauge field

corresponding to the electric charge grows linearly (non-normalizable) and must be kept

fixed, while the mode corresponding to the electric potential is constant (normalizable),

and allowed to fluctuate.
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The quantum entropy function, a function of the electric charges qi and moduli φa0, is

then defined as the functional integral

Ω(qi, φ
a
0) =

〈

exp

[

− i qi

∮

uE

Ai

]〉finite

AdS2

. (2.5)

The superscript refers to the following prescription for regulating the divergence due to the

infinite volume of the AdS2: First, one enforces a cutoff at a large r = r0 (more general

cut-offs have been recently discussed in [5]). As r0 → ∞, the proper length L ∼ 2π
√

vr0

of the boundary goes to infinity, and the integrand always scales as eC1r0+C0+O(r−1

0
). The

finite part is defined as eC0 .

In the classical limit, the functional integral (2.5) is dominated by the saddle point

where all fields take their classical values (2.2). In this case, the path integral reduces to
〈

exp

[

− i qi

∮

uE

Ai

]〉

∼ exp

(

−Sbulk − Sbdry − iqi

∮

uE

Ai

)

, (2.6)

where

Sbulk =

∮

uE

(r0 − 1) v L duE (2.7)

is the regulated two-dimensional action. Since the integrand is independent of uE , the

integral simply produces a factor of 2π. Sbdry has a divergent part proportional to r0 and

no constant part. The divergent part can be removed by adding an appropriate counterterm

in the boundary action, leaving

Ω(qi, φ
a
0) ∼ e2π(qie

i−vL) ≡ eS0 , (2.8)

where the electric field ei is related to the charge qi via

qi =
∂(vL)

∂ei
. (2.9)

As shown in [19], the classical action S0 reproduces the Bekenstein-Hawking-Wald entropy

of the extremal black hole.

Quantum corrections to the classical answer (2.8) are of two types: (i) fluctuations

around the classical field configuration (2.2), which produce power law corrections, and (ii)

non-perturbative effects come from different classical solutions with the same asymptotics

as (2.2) (and fluctuations about those configurations), which are exponentially suppressed

with respect to (2.8).

In [4, 5], it was proposed that there is a universal series of non-perturbative corrections

to the degeneracy of the form eS0/c for c integer coming from orbifolds of AdS2 × M . We

shall see in the next section that this is indeed borne out for BTZ black holes.

3 Subleading saddle points for extremal BTZ black holes

In this section, we construct an infinite family of solutions asymptotic to extremal BTZ

black holes, and find that they lead to exponentially suppressed contributions of order (1.1)

to the quantum entropy function.

– 5 –
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3.1 The BTZ black hole

The general solution of three-dimensional gravity with scalar curvature −6/ℓ2 asymptotic

to AdS3 is given by the two-parameter family of BTZ black holes [20],

ds2
3 = −(ρ2 − ρ2

+)(ρ2 − ρ2
−)

ρ2
dt2 +

ℓ2ρ2

(ρ2 − ρ2
+)(ρ2 − ρ2

−)
dρ2 + ρ2

(

dy − ρ+ρ−
ρ2

dt

)2

, (3.1)

where the azimuthal coordinate of AdS3 at infinity y has periodicity 2π. The parameters

ρ+ > ρ− > 0 denote the location of the outer and inner horizon, and depend on the mass

M and angular momentum J via M = (ρ2
+ + ρ2

−)/(8Gℓ2), J = ρ+ρ−/(4Gℓ); henceforth we

set 8G = 1.

The solution (3.1) is well-known to be an orbifold of AdS3 [21, 22]: to see this, define

for the exterior region ρ > ρ+,

z ≡
√

ρ2
+ − ρ2

−

ρ2 − ρ2
−

e(ρ+y−ρ−t)/ℓ , w± ≡
√

ρ2 − ρ2
+

ρ2 − ρ2
−

e(ρ+∓ρ−)(y±t)/ℓ (3.2)

The coordinates (w+, w−, z) parametrize an element g of G = SL(2, R),

g =

(

1 w+

0 1

)

·
(

z 0

0 1/z

)

·
(

1 0

w− 1

)

(3.3)

and the metric (3.1) is locally the bi-invariant metric on the group manifold G, ds2
3 =

ℓ2(dz2 + dw+dw−)/z2. Globally, the periodicity y ∼ y + 2π implies the identification

g ∼ gL · g · gR where

gL =

(

eπ(ρ+−ρ−)/l 0

0 e−π(ρ+−ρ−)/ℓ

)

, gR =

(

eπ(ρ++ρ−)/l 0

0 e−π(ρ++ρ−)/ℓ

)

(3.4)

are two hyperbolic elements in G.

The Euclidean section is obtained by analytically continuing both the time coordinate

t → −itE and the parameter ρ− → ir−, and letting tE, r− be real. Regularity of the

Euclidean section at ρ+ requires identifying

(t, y) ∼
(

t +
i

T
, y +

iΩ

T

)

, T =
ρ2
+ − ρ2

−

2πℓρ+
, Ω =

ρ−
ρ+

, (3.5)

which amounts to the trivial identification

(w+, w−, z) ∼
(

e2πiw+, e−2πiw−, z
)

(3.6)

on the group manifold G. The Euclidean section is a two-dimensional solid torus filled with

an hyperbolic metric. The A-cycle (t(s), y(s)) = (t0 + is/T, y0 + iΩs/T ) with 0 ≤ s < 1 is

contractible in the full geometry, hence identified as the thermal circle, while the B-cycle

(t(s), y(s)) = (t0, y0 + 2πs) is non-contractible. The complex structure of the torus T 2

generated by ∂tE , ∂y at fixed radial distance ρ is parametrized by the modulus

τ+ =
i

ℓ

(

ρ− + ρ+

√

ρ2 − ρ2
−

ρ2 − ρ2
+

)

, (3.7)

– 6 –
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We define

τ− =
i

ℓ

(

ρ− − ρ+

√

ρ2 − ρ2
−

ρ2 − ρ2
+

)

. (3.8)

such that τ+ and τ− are complex conjugate to each other when ρ− (hence the angular

momentum) is imaginary. At large radius, the complex structure of the induced metric on

the torus goes to a constant,

τ∞
± =

i

ℓ
(ρ− ± ρ+) . (3.9)

3.2 The extremal limit

The extremal limit corresponds to ρ+ → ρ− or ℓM → J , such that the temperature T goes

to zero. Before taking the limit, it is convenient to change coordinates to

r ≡ 2ρ2 − ρ2
+ − ρ2

−

ρ2
+ − ρ2

−

, u ≡ 1

ℓ
(ρ+ − ρ−)(t + y) , φ ≡ y − ρ−

ρ+
t , (3.10)

such that the group element (3.3) is now parametrized by

z =

√

2

r + 1
eRφ/2 , w+ =

√

r − 1

r + 1
eu , w− =

√

r − 1

r + 1
eRφ−u , (3.11)

where R ≡ 2ρ+/ℓ. In these coordinates, the metric (3.1) takes the form

ds2
3 =

ℓ2

4

[

−(r2 − 1)du2 +
dr2

r2 − 1
+ R2

(

dφ +
1

R
(r − 1)du

)2
]

, (3.12)

while the thermal and angular identifications are, respectively,

(u, φ) ∼ (u + 2πi, φ) ∼
(

u +
2π

ℓ
(ρ+ − ρ−), φ + 2π

)

. (3.13)

We now take the extremal limit ρ+ → ρ−, keeping the coordinates (r, u, φ) and pa-

rameter R fixed. The metric stays as in (3.12), but the thermal and angular identifications

simplify to

(u, φ) ∼ (u + 2πi, φ) ∼ (u, φ + 2π) . (3.14)

To leading order in λ ≡ (ρ+ − ρ−)/2 → 0, the change of variable (3.10) coincides with the

one considered in [19, 23]

ρ = ρ+ + λ(r − 1) , t =
ℓ

4λ
u , y = φ +

ℓ

4λ

(

1 − 2λ

ρ+

)

u . (3.15)

In the extremal limit, the complex structure (3.7),(3.8) of the (u, φ) torus reduces to

τ± =
iR

2

(

1 ±
√

r + 1

r − 1

)

. (3.16)

It is a characteristic feature of the near-horizon geometry that τ+ ∼ iR goes to a finite

value while −1/τ− ∼ −2ir/R diverges linearly as r → ∞. More invariantly, the left-moving

complex structure τ+ is regular at r = ∞ while the right-moving one τ− reaches a cusp of

the moduli space H/SL(2, Z). This is possible because τ+ and τ− are not complex conjugate

to each other in the Lorentzian geometry, and ρ− needs to stay real for the extremal limit

to exist.

– 7 –
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3.3 A family of extremal solutions

Given a complex structure on T 2 labelled by τ∞ or one of its images (aτ∞ + b)/(cτ∞ + d)

with
(

a b

c d

)

∈ SL(2, Z), there exists a unique hyperbolic metric with T 2 as boundary.

There is however, an infinite family of physically distinct smooth solutions differing by the

homology class of the contractible cycle in the full geometry [2, 24].

It can be parameterized by two coprime integers (c, d) as follows: given the parameters

ρ+, ρ− of the original metric (3.1), and the corresponding asymptotic complex structure

moduli (3.9), we define transformed parameters ρ′+, ρ′− via

i

ℓ
(ρ′− ± ρ′+) ≡ 1

d + c/τ∞
±

, (3.17)

and coordinates ρ′, y′, t′ via

y′ ± t′ ≡ −
(

b + a/τ∞
∓

)

(y ± t) ,
ρ′+

2 − ρ′−
2

ρ′2 − ρ′−
2 ≡ ρ2

+ − ρ2
−

ρ2 − ρ2
−

. (3.18)

The solution labelled by (c, d) is obtained by replacing all quantities in the BTZ so-

lution (3.1) by corresponding primed quantities. Thus, the metric ds′23 = ℓ2(dz′2 +

dw′
+dw′

−)/z′2 is still locally isometric to AdS3, with

w′
± ≡

√

ρ′2 − ρ′2+
ρ′2 − ρ′2−

e(ρ′
+
∓ρ′

−
)(y′±t′)/ℓ =

√

ρ2 − ρ2
+

ρ2 − ρ2
−

exp

(

±i(y ± t)
b + a/τ∞

∓

d + c/τ∞
∓

)

(3.19)

and similarly for z′. The original solution (3.1) is recovered for (c, d) = (1, 0), while (c, d) =

(0, 1) reproduces global AdS3 with ρ′+ = 0. All these solutions have the same asymptotics

ds′
2
3 = ρ′

2
(−dt′

2
+ dy′

2
) + ℓ2 dρ′2

ρ′2
as ρ′ → ∞ , (3.20)

and coordinate periodicities

(t′, y′) ∼
(

t′ +
i

T
, y′ +

iΩ

T

)

∼
(

t′, y′ + 2π
)

, (3.21)

where T,Ω are the temperature and angular velocity of the original solution (3.5). However

they differ in the homology of the thermal circle (i.e. the one which is contractible in the

bulk). The latter is obtained by demanding that the argument of w′
± in (3.19) varies by

±2πi as in (3.6), i.e.

(t′(s), y′(s)) =

(

t′0 +
ic s

T
; y′0 +

ic s Ω

T
+ 2πd s

)

(3.22)

with 0 ≤ s ≤ 1. Changing d → d + c does not affect the contractible cycle, so inequivalent

solutions are labelled by double cosets Γ∞\SL(2, Z)/Γ∞ where Γ∞ =
(

1 ∗

0 1

)

.

We now take the extremal limit of these solutions by taking ρ′+ → ρ′− and zooming in

the region ρ′ ∼ ρ′+. We do this as before by changing coordinates

r′ ≡ 2ρ′2 − ρ′+
2 − ρ′−

2

ρ′+
2 − ρ′−

2 , u′ ≡ 1

ℓ
(ρ′+ − ρ′−)(t′ + y′) , φ′ ≡ y′ − ρ′−

ρ′+
t′ , (3.23)

– 8 –
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and taking the above limits keeping (r′, u′, φ′) fixed. In these coordinates, the metric

becomes

ds′
2
3 =

ℓ2

4

[

−(r′
2 − 1)du′2 +

dr′2

r′2 − 1
+ R′2

(

dφ′ +
1

R′
(r′ − 1)du′

)2
]

, (3.24)

with R′ = 2ρ′+/ℓ, the identifications (3.21) translate to

(u′, φ′) ∼ (u′ + 2πi/c, φ′ − 2πd/c) ∼ (u′, φ′ + 2π) , (3.25)

while the thermal circle is independent of (c, d),

(u′(s), φ′(s)) ∼ (u′
0 + 2πis, φ′

0) . (3.26)

Comparing (3.25) with (3.14), it is apparent that the extremal limit of the solution labelled

by (c, d) is a Z/cZ orbifold of the solution (3.12), with R replaced by R′, by a translation

γc : (u, φ) 7→ (u + 2πi/c, φ − 2πd/c) . (3.27)

Near r = 1, the Euclidean geometry looks like (R2 × S1)/Zc, where γc acts by a 2π/c

rotation around the origin of the plane times a translation of angle 2πd/c along the circle

S1 parametrized by φ. Since (c, d) are relatively prime, this action has no fixed point and

the quotient is smooth, as must be the case as the original family of solutions was smooth.

We now observe that the family of distinct extremal solutions given by (3.24) with

periodicities (3.25), all have the same asymptotics, namely AdS2 × S1, provided 1/R′ =

c/R + id is kept fixed while varying (R, c, d). Indeed, in coordinates r′ = cr, u′ = u/c, φ′ =

φ + i(d/c)u, the metric takes the form

ds′
2
3 =

ℓ2

4

[

−
(

r2 − 1

c2

)

du2 +
dr2

r2 − 1
c2

+ R′2
(

dφ +

(

r − 1

c

)

du

R′
− i

d

c
du

)2
]

, (3.28)

with the same coordinate periodicities as in (3.14). It is easy to check that the fall-off

conditions (2.4) with v = ℓ2/4 are indeed satisfied for any (c, d) coprime, c ≥ 1. As

mentioned in the introduction, in contrast to the AdS3 Farey tail, the mass (or angular

momentum) of the BTZ black hole is fixed, while the complex structure varies as a function

of (c, d). This is consistent with the microcanonical ensemble required for the quantum

entropy function.

In the presence of fermions and if the original theory was supersymmetric, the extremal

BTZ solutions admit Killing spinors [25]. These supercurrents depend only on the r coordi-

nate in the solution (3.32), and therefore are not affected by the orbifold. Thus, the family

of extremal solutions that we constructed preserve the same amount of supersymmetry.

3.4 The quantum entropy function for BTZ black holes

We can now apply the quantum entropy function formalism of § 2 to the extremal BTZ

black hole. Since φ is a compact direction, the three-dimensional Einstein action may be

reduced to two dimensions using the Kaluza-Klein ansatz

ds2
3 = ds2

2 + ℓ2 e−2ψ(dφ + A)2 , (3.29)
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leading to the two-dimensional action [26]

S =

∫

d2x
√−g

[

e−ψ
(

R +
2

ℓ2

)

− ℓ2

4
e−3ψF 2

]

+ . . . , (3.30)

where the ellipses denote contribution from the extra fields in three dimensions, and from

Kaluza-Klein modes.

In particular, the BTZ metric (3.12) provides a classical solution to (3.30) with

ds2
2 =

ℓ2

4

[

−(r2 − 1)du2 +
dr2

r2 − 1

]

, e−2ψ =
R2

4
, A =

1

R
(r − 1)du . (3.31)

The two-dimensional metric ds2
2 is just the two-dimensional AdS2 black hole (2.1), with

constant electric flux e = 1/R. Similarly, the family of solutions (3.28) reduces to solutions

to (3.30) with the same asymptotics and charge as (3.31). This family of solutions will

therefore also contribute to the quantum entropy function.

It is easiest to compute this contribution by regarding the (c, d) solution as a freely

acting orbifold of the solution (3.31):

ds2
2 =

ℓ2

4

[

−(r2 − 1)du2 +
dr2

r2 − 1

]

, e−2ψ =
R2

4
, A =

(

1

R
(r − 1) + i d

)

du ,

(3.32)

with u ∼ u + 2πi/c. Since the solutions are locally isometric to (3.31), the Lagrangian

density in coordinates (u, r) is constant and independent of (c, d). In the classical limit (2.6),

the (c, d) dependence appears in the periodicity of the u variable and the discrete Wilson

line. The contribution of the bulk action (2.7) is

A
(c,d)
bulk =

2π

c
(r0 − 1) v L (3.33)

where v = ℓ2/4, and the value of the Wilson line is

iq

∮

uE

A = 2πi q d/c . (3.34)

By putting a cut-off in the radial direction at r = r0 in (3.32) (equivalently r = r0/c

in (3.28)) and discarding the linearly divergent part, one finds that the solution labelled

by (c, d) contributes in the classical limit to the quantum entropy function (2.5) as

Ω(c,d)(q) = exp

(S0

c
+ 2πi q

d

c

)

, (3.35)

where S0 is the contribution for (c, d) = (1, 0), i.e. the Wald entropy. Thus, the family

of solutions with c > 1 leads to a series of exponentially suppressed corrections of the

form (3.35).

Our conclusion agrees in spirit with the proposal put forward in [4, 5], but yields a more

precise identification of the orbifold action in the case of BTZ black holes. In particular,

the geometry associated to the subleading saddle points appears to be smooth, and the

orbifold acts trivially on the compact manifold M̃ . In the next section, we discuss the

case of dyons in N = 4 string backgrounds in more detail, where the compact manifold

M = S1 × S1 × S2 × K3 allows for more general choices of the orbifold action.
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4 The dyon partition function in N = 4 theories

In this section, we study the exponentially subleading contributions to the degeneracies

of dyons in N = 4 string vacua, and find agreement with the general structure found in

section 3. We also develop a general “Farey tale” expansion for the partition function of

N = 4 dyons at fixed value of the magnetic charge P 2/2, and contrast it with the usual

“Farey tail” series governing the AdS3 partition function.

4.1 The degeneracy formula

We first summarize some well-known facts about dyon degeneracies in N = 4 string back-

grounds, referring e.g. to [27] for more details. While our construction can be easily ex-

tended to other N = 4 backgrounds, we focus for simplicity on the heterotic string com-

pactified on a six-dimensional torus T 6, or equivalently type II string on K3 × T 2. The

resulting four-dimensional theory is invariant under S and T-duality,

G(Z) ≡ SL(2, Z) × O(22, 6; Z) . (4.1)

Dyons are labelled by their electric and magnetic charges (Qi, P i), i = 1, . . . , 28, trans-

forming linearly as a (2,28) representation of G(Z). Both Qi and P i take values in

an even self-dual lattice Λ of signature (22,6), the Narain lattice of the heterotic torus.

The automorphism group of Λ defines the discrete subgroup O(22, 6; Z) ⊂ O(22, 6, R).

The orbits of (Qi, P i) under O(22, 6; Z) are labelled by the quadratic combinations Q2/2,

P 2/2, and P · Q, invariant under the continuous T-duality, and the discrete invariant

I = gcd(QiP j − QjP i) ∈ Z
+, which is also invariant under S-duality. All dyons in the

same orbit carry the same indexed degeneracy Ω(Q2/2, P · Q,P 2/2, I).3 Here we restrict

to the simplest case I = 1, referring to [5, 16, 17] for generalizations.

The indexed degeneracies Ω(Q2/2, P ·Q,P 2/2, I = 1) can be packaged into a partition

function Z(ρ, v, σ), a function of three complex variables (ρ, v, σ) acting as chemical po-

tentials for the T-duality invariants (Q2/2, P · Q,P 2/2), respectively. As first conjectured

in [10], Z is a Siegel modular form of weight k = −10, i.e. it satisfies

Z[(Aτ + B)(Cτ + D)−1] = [det (Cτ + D)]k Z(τ) (4.2)

for k = 10, where τ =
(

ρ v

v σ

)

parametrizes Siegel’s upper half-plane

Imρ > 0, Imσ > 0, (Imρ)(Imσ) > (Imv)2 , (4.3)

and g =
(

A B

C D

)

is any element of Sp(2, Z), i.e. any integer valued matrix such that gJgt = J

where J =
(

0 −1

1 0

)

:

ABT = BAT , CDT = DCT , ADT − BCT = 1 . (4.4)

3For brevity we omit the dependence of Ω on the values of the moduli at spatial infinity, and correspond-

ingly the ambiguity in the choice of integration contour in (4.9). The resulting ambiguities in Ω scale like

exp(Q) and are still much smaller than the exponentially suppressed corrections of interest for this paper.
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More specifically, for the heterotic string compactified on T 6, Z is the inverse of Igusa’s

cusp form Φ10, which is the unique cusp form of weight −k = 10 under Sp(2, Z):

Z =
1

Φ10
. (4.5)

Alternatively, Φ10 can be obtained as the square of the product of all even genus 2 theta

functions, or as the additive lift of the index 1, weight 10 Jacobi form η18(ρ) θ2
1(ρ, v), or

as the multiplicative lift of the elliptic genus of K3. The latter characterization means

that [28]

Z =
exp

(
∑∞

m=1 e2πimσ Vm · χK3

)

η18(ρ) θ2
1(ρ, v)

(4.6)

where

χK3(ρ, v) = 24

(

θ3(ρ, v)

θ3(ρ, 0)

)2

− 2

[

θ4
4(ρ, 0) − θ4

2(ρ, 0)
]

θ2
1(ρ, v)

η6(ρ)
(4.7)

and Vm are Hecke operators, acting on the Fourier coefficients c(N, l) of a Jacobi form φ

of weight k via [29]

Vm · φ(ρ, v) =
∑

N,l





∑

d|(N,l,m)

dk−1 c(Nl/d2, l/d)



 e2πi(Nρ+lv) . (4.8)

Given the dyon partition function Z, the indexed degeneracies can be found from

Ω(P,Q) = (−1)P ·Q+1

∫

C
dρdv dσ e−iπ(Q2ρ+2P ·Qv+P 2σ) Z(ρ, v, σ) (4.9)

where (for an appropriate choice of moduli at spatial infinity) the contour C is given by

0 < Re(ρ) ≤ 1, 0 < Re(v) ≤ 1 , 0 < Re(σ) ≤ 1 , (4.10)

while Im(ρ), Im(v), Im(σ) are fixed to some large positive value. In this framework, S-

duality is realized as an SL(2, Z) subgroup of Sp(2, Z) , under which (ρ, v, σ) transforms as

a three-vector dual to (P 2/2, P · Q,Q2/2):

gS =











a −b 0 0

−c d 0 0

0 0 d c

0 0 b a











,







ρ′

v′

σ′






=







a2 −2ab b2

−ac ad + bc −bd

c2 −2cd d2













ρ

v

σ






. (4.11)

Invariance of Z under SL(2, Z) ⊂ Sp(2, Z) ensures that the right-hand side of (4.9) is

invariant under S-duality. The reason for covariance under the full Siegel modular group

is less clear, except in the context of string network constructions [12, 30].

Rather than extracting the Fourier coefficients of Z(ρ, v, σ) with respect to its three

arguments, it is useful to consider the partition function Zm(ρ, v) for black holes at fixed

values of m = P 2/2, but arbitrary values of Q2/2 and P · Q:

Zm(ρ, v) =

∫ 1+iIm(σ)

0+iIm(σ)
dσ Z(ρ, v, σ) e−2πimσ , (4.12)
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where again Im(σ) is kept fixed and large. The modular property (4.2) for the subgroup

SL(2, R)ρ ⋉ H3 of Sp(2, Z) of matrices of the form

(

a b

c d

)

ρ
=











a 0 b 0

0 1 0 0

c 0 d 0

0 0 0 1











: (ρ′, v′, σ′) =

(

aρ + b

cρ + d
,

v

cρ + d
, σ − cv2

cρ + d

)

(4.13)

and

T̃λ,µ,κ =











1 0 0 µ

λ 1 µ κ

0 0 1 −λ

0 0 0 1











:







ρ′

v′

σ′






=







ρ

v + µ + λρ

σ + κ + 2λv + λµ + λ2ρ






, (4.14)

implies that Zm(ρ, v) is a Jacobi form of weight k = −10 and index m, i.e. it satisfies4

Zm
(

aρ + b

cρ + d
,

v

cρ + d

)

= (cρ + d)k e2πi mcv2

cρ+d Zm(ρ, v) , (4.15)

Zm (ρ, v + λρ + µ) = e−2πim[λ(µ+2v)+λ2ρ] Zm(ρ, v) . (4.16)

Zm(ρ, v) is however not a holomorphic function of v, since it has a second order pole at

the theta divisor v ∈ Z + ρZ. This pole cancels in the product

Z5D
m (ρ, v) = η18(ρ) θ2

1(ρ, v)Zm(ρ, v) , (4.17)

which is a holomorphic Jacobi form of weight 0 and index m+1. Physically, Z5D
m (ρ, v) is the

elliptic genus of the D1-D5 superconformal field theory, counting 5D black hole microstates

with Q1Q5 = m, momentum n and angular momentum l,

Z5D
m (ρ, v) =

∑

n,l

Ω5D(Q1Q5, n, l) e2πi(nρ+lv) . (4.18)

The equation (4.17) can be used to systematically evaluate the asymptotic expansion of

the 5D black hole degeneracy [31, 32]. Our interest will be on the meromorphic partition

function Zm(ρ, v), which should correspond to the elliptic genus of the SCFT dual to

N = 4 dyons.

4.2 Mapping the poles

Our aim will be to evaluate the contour integrals (4.9) and (4.12) by use of Cauchy’s residue

formula. In this subsection, we describe the pole structure of the partition function Z, and

find an explicit Sp(2, Z) transformation which maps any of them to the standard diagonal

divisor v = 0.

4These relations may fail if one crosses poles in the σ plane when deforming the contour back to its

original location. This does not happen provided the imaginary part Imσ∗ for all poles is bounded from

above, and the contour in (4.12) is chosen at a sufficiently large value of Imσ.
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The partition function Z is well known to have a second order pole5 at the diagonal

divisor v = 0, where it behaves as

Z(ρ, v, σ) =
1

v2 g(ρ, σ)
+ O(v0) , (4.19)

where

g(ρ, σ) = η24(ρ) η24(σ) (4.20)

is a Hilbert modular form6 of weight 2− k. By Sp(2, Z) invariance, Z must have a second

order pole at all images of the diagonal divisor, i.e. at the quadratic divisors

D(mi, j, ni; Ω) ≡ m2 − m1ρ + n1σ + n2(ρσ − v2) + jv = 0 , (4.21)

where j is any odd integer and the 5 integers M = (m1,m2, j, n1, n2) are constrained

to satisfy

∆(M) ≡ j2 + 4(m1n1 + m2n2) = 1 . (4.22)

The diagonal divisor v = 0 corresponds to M = (0, 0, 1, 0, 0), with ∆(M) = 1. The union

of all quadratic divisors (4.21) with ∆(M) = 1 defines the first Humbert surface [34].

The invariance of the constraint (4.22) can be made manifest by fitting M into an anti-

symmetric anti-traceless bilinear form in C
4,

M =











0 −m2 j
2 n1

m2 0 m1 − j
2

− j
2 −m1 0 −n2

−n1
j
2 n2 0











, (4.23)

such that M transforms as M ′ = ΩMΩt and ∆(M) = 4Pf(M) is manifestly invariant. This

realizes the local isomorphism Sp(2) = SO(2, 3). Moreover, one may check that under a

simultaneous Sp(2, Z) action on M and Ω, (4.21) transforms with weight −1,

D(M ′; Ω′) = [det(CΩ + D)]−1 D(M,Ω) . (4.24)

It will be important to determine the residue of Z on the general quadratic divi-

sor (4.21). For this purpose, it suffices to find a Sp(2, Z) transformation which maps

M1 = (0, 0, 1, 0, 0) to an arbitrary M = (m1,m2, j, n1, n2) satisfying

m1n1 + m2n2 =
1 − j2

4
. (4.25)

Moreover, we shall insist that the choice of this transformation is covariant with respect to

SL(2, Z)ρ. We shall restrict our attention to (n1, n2) 6= (0, 0). It is then useful to choose

coprime integers (k1, k2) such that

k2n1 − k1n2 = r , (4.26)

5Our construction straightforwardly generalizes to Siegel modular forms of arbitrary weight k, with a

pole of arbitrary order at v = 0, or to modular forms invariant under a finite index subgroup of the Siegel

modular group.
6For our purposes, a Hilbert modular form of weight w is a function of ρ, σ which is a modular form of

weight w in each argument, and invariant under the exchange ρ ↔ σ, see e.g. [33].
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where r is the greatest common divisor of (n1, n2) = r(n′
1, n

′
2). When (4.25) is obeyed, r

must divide (1 − j2)/4. The solutions to (4.25) can then be parametrized as

m1 = −j2 − 1

4r
k2 + αn′

2 , m2 =
j2 − 1

4r
k1 − αn′

1 , (4.27)

where both αn′
1 and αn′

2 must be integer. Since (n′
1, n

′
2) are coprime, this amounts to

requiring that α is integer. Note that (k1, k2) are defined up to the addition of an integer

multiple of (n′
1, n

′
2): this can be reabsorbed into a shift of α by an integer multiple of

(j2 − 1)/4r, which is integer. We further define

δ ≡ α mod r . (4.28)

Since r|(j2 − 1)/4, we may further decompose r = r1r2 into a product of relatively prime

factors, where r1 divides (j + 1)/2 and r2 divides (j − 1)/2:

j + 1 = 2r1j2 , j − 1 = 2r2j1 , r1j2 − r2j1 = 1 . (4.29)

The most general solution is given by

j1 = s1 + r1L , j2 = s2 + r2L , j = 2rL + j0 (4.30)

where s1, s2 are fixed integers with r1s2 − r2s1 = 1, L is an arbitrary integer, and j0 ≡
r1s2 + r2s1.

Having defined these number theoretic quantities, it is now easy to check that

h =
(

1 (α − δ)/r

0 1

)

σ
·
(

−k1 −n1/r

k2 n2/r

)

ρ
·





j2 0 0 j1
δj2 j2 j1 δj1
r2m1 r2 r1 −r1m1

r2 0 0 r1



 (4.31)

is an element of Sp(2, Z) mapping M1 = (0, 0, 1, 0, 0) into M = (m1,m2, j, n1, n2). Clearly,

h is ambiguous modulo right multiplication by an element in the stabilizer of M1, i.e. in

the Hilbert modular group SL(2, Z)ρ × SL(2, Z)σ ⋉ (ρ ↔ σ). As we discuss shortly, the

choice (4.31) has the advantage of being covariant with respect to SL(2, Z)ρ.

Denoting by τ ′ = (ρ′, v′, σ′) the image7 of τ under h−1, the quadratic divisor (4.21) is

therefore mapped to D(M1, τ
′) = 0, i.e. v′ = 0. For later use, we record the Jacobian from

(ρ, v, σ) to (ρ′, v′, σ′): it is given by ∂τ/∂τ ′ = [det(Cτ + D)]3 where det(Cτ + D) equals

1

r2
1

det

(

j+1
2 (k2ρ + k1) + δ(n2ρ + n1) + rv α + j−1

2 δ − v
(

j+1
2 k2 + δn2

)

− rσ

n2ρ + n1 −n2v + j+1
2

)

. (4.32)

7For comparison with other discussions in the literature, our change of variable reduces for M =

(0, 0, 1, 0, 1), k1 = −1, k2 = α = δ = 0 to

ρ′ =
ρ

(v − 1)2 − ρσ
, v′ =

v(1 − v) + ρσ

(v − 1)2 − ρσ
, σ′ =

σ

(v − 1)2 − ρσ
.

The change of variable for general M is too cumbersome to be displayed, but follows immediately from

τ ′ = (Aτ + B)(Cτ + D)−1 with h−1 =

„

A B

C D

«

the inverse of (4.31).
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Having found a suitable Sp(2, Z) transformation mapping the general divisor (4.21)

back to the diagonal divisor v = 0, it is now straightforward to extract the residue of Z
on (4.21) using (4.19) in the primed coordinates. For example, expanding around σ = σ∗

where σ∗ is the location of the pole in the σ plane,

σ∗ =
m1ρ − m2 + n2v

2 − jv

n2ρ + n1
, (4.33)

we have

ρ′ = − 1

ρ0

(

1 − r2
2(σ − σ∗)/ρ0 + . . .

)

,

v′ = − r

ρ0
(σ − σ∗)

(

1 − r2
2(σ − σ∗)/ρ0 + . . .

)

,

σ′ = σ0 + r2
1(σ − σ∗) + . . . ,

det(Cτ + D) = −ρ0 (n′
2ρ + n′

1)
(

1 + r2
2(σ − σ∗)/ρ0 + . . .

)

,

(4.34)

where (ρ0, σ0) are the values of (−1/ρ′, σ′) at σ = σ∗, namely

ρ0 =
j + 1

2r2
1

k2ρ + k1

n′
2ρ + n′

1

+
r2

r1

v

n′
2ρ + n′

1

+
r2

r1
δ ,

σ0 = −j − 1

2r2
2

k2ρ + k1

n′
2ρ + n′

1

− r1

r2

v

n′
2ρ + n′

1

+
r1

r2
δ .

(4.35)

Using the modular properties of Z(ρ, v, σ) and g(ρ, σ), we conclude that on the quadratic

divisor (4.21),

Z(ρ, v, σ) ∼ (ρ′)2−k[det(Cτ + D)]−k

(v′)2 g(−1/ρ′, σ′)

=
(n′

2ρ + n′
1)

−k

r2(σ − σ∗)2 g(ρ0, σ0)

[

1 − (r2
2∂ρ0 + r2

1∂σ0
)g(ρ0, σ0)

g(ρ0, σ0)
(σ − σ∗) + . . .

]

.

(4.36)

It is important to note that the poles (4.33) are bounded from above in the σ plane: indeed,

expressing m1 in terms of m2, j, n1, n2 using (4.22) and extremizing with respect to j, one

obtains

Imσ∗ ≤
Imρ

4|n2ρ + n1|2
+

(Imv)2

Imρ
, (4.37)

where the upper bound would be reached at j/2 = n2Re(v) − (n1 + n2Reρ)Imv/Imρ. A

further extremization with respect to n1, n2 leads to

Imσ∗ ≤
1

4
max(Imρ, 1/Imρ) +

(Imv)2

Imρ
, (4.38)

which ensures that the Fourier coefficient (4.12) is indeed a Jacobi form, as discussed in

footnote 4.

Alternatively, one may expand in the v plane around either of the two roots of (4.21)

v± =
1

2n2

(

j ±
√

(n1σ − m1ρ + m2)2 − 4jn2

)

. (4.39)
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The asymptotic expansion is obtained by replacing

σ − σ∗ =
n2

n2ρ + n1

(

∓(v+ − v−)(v − v±) + (v − v±)2 + . . .
)

(4.40)

and v = v± + (v − v±) in the expansions above.

It is important that our choice of Sp(2, Z) transformation is covariant under SL(2, Z)ρ:

if (ρ, v) transform as in (4.13) and if M transforms as

(

n1 k1 m2

n2 k2 −m1

)

7→
(

a −b

−c d

)(

n1 k1

n2 k2

)

, (j, α, δ) 7→ (j, α, δ) , (4.41)

then ρ0, σ0 are invariant, while σ∗ transforms in the same way as σ in (4.13). On the other

hand, under the spectral flow (4.14), n1, n2, k1, k2 can be taken to be invariant, so that

ρ0 7→ ρ0 −
r2

r1
(k1λ − k2µ) , σ0 7→ σ0 +

r1

r2
(k1λ − k2µ) ,

σ∗ 7→ σ∗ + λ(µ + λρ + 2v) + κ ,
(4.42)

while α shifts by an integer,

α 7→ α +
(j − λn1 + µn2)[k2(µn2 − λn1) + rλ]

n2
+ κr . (4.43)

In particular, the spectral flow T̃0,0,κ takes α 7→ α + κr, and leaves δ invariant.

4.3 Subleading contributions to the 4D degeneracies

We now evaluate the integral (4.9) by first performing the σ integral using Cauchy’s residue

formula, and evaluating the remaining integral over (ρ, v) in the saddle point approxi-

mation.8 This approximation becomes exact in the limit where Q2/2, P 2/2, P · Q are

scaled to infinity keeping their ratio fixed. Moreover, we assume that the quartic invariant

P 2Q2−(P ·Q)2 is positive, such that the entropy is dominated by a large dyonic black hole.

The poles that contribute to the σ integral must belong to the strip 0 ≤ σ ≤ 1. Since

any pole can be mapped into this strip by a spectral flow T̃0,0,κ, which maps (m1,m2) 7→
(m1 +κn2,m

2 −κn1), and since the residue is invariant under this action, we must restrict

to poles with 0 ≤ m1 < n2, subject to the quadratic constraint (4.22). Using (4.36), we find

Ω(P,Q) = Ω(0)(P,Q) + (−1)P ·Q+1

∫ 1

0
dρ

∫ 1

0
dv

∑

(n1,n2,j,m1,m2),∆(M)=1

(n′
2ρ + n′

1)
−k

r2 g(ρ0, σ0)

(

iπP 2 +
(r2

2∂ρ0 + r2
1∂σ0

)g(ρ0, σ0)

g(ρ0, σ0)

)

e−iπ(Q2ρ+2P ·Qv+P 2σ∗) ,

(4.44)

where Ω(0)(P,Q) includes the contribution with poles with (n1, n2) = (0, 0), possibly to-

gether with additional boundary contributions which remain after the contour has been

8The more standard approach where the integral over v is done by the residue theorem while the ones

over (ρ, σ) are done in the saddle point approximation is discussed in appendix B.
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deformed across all poles with (n1, n2) 6= (0, 0). As mentioned below (4.12), the integrand

is a Jacobi form Zm(ρ, v) of index m = P 2/2 and weight k = −10, which we discuss in its

own right in the next subsection. For now, we proceed with the integral over ρ and v.

To leading order in the charges, the integral (4.44) can be approximated by extremizing

the exponent with respect to (ρ, v), including the fluctuation determinant and evaluating

the prefactor at the saddle point. The saddle point lies at

ρ∗ = −n1

n2
+i

P 2

2n2

√

P 2Q2 − (P · Q)2
, v∗ =

j

2n2
+i

P · Q
2n2

√

P 2Q2 − (P · Q)2
, (4.45)

at which point the location of the pole (4.33) evaluates to

σ∗ =
m1

n2
+ i

Q2

2n2

√

P 2Q2 − (P · Q)2
. (4.46)

Note in particular that (ρ∗, v∗, σ∗) transforms as a triplet under S-duality (4.11). For the

saddle point to lie in the integration domain, we require that −n2 < n1 ≤ 0, 1 ≤ j < 2n2.

The value of the exponent at the saddle point is given by [4]

S⋆ =
π

n2

√

P 2Q2 − (P · Q)2 +
iπ

n2
(n1Q

2 − j(P · Q) − m1P 2) (4.47)

Thus, as already noted in [10], the poles with n2 > 1 give exponentially suppressed con-

tributions with respect to the one with n2 = 1. Our interest is in further analyzing the

contributions of all the subleading saddle points, extending the analysis in [4].

The fluctuation determinant around the saddle point (4.45) is given by

det

(

∂ρ2S ∂ρvS
∂ρvS ∂v2S

)

=

(

4πn2[P
2Q2 − (P · Q)2]

P 2

)2

. (4.48)

Moreover, the arguments (ρ0, σ0) of the prefactor in (4.44) reduce to

ρ∗0 =
k2(j + 1)

2r2
1n

′
2

+
1

r1n′
2 P 2

(

−P · Q + i
√

P 2Q2 − (P · Q)2
)

,

σ∗
0 = −k2(j − 1)

2r2
2n

′
2

+
1

r2n′
2 P 2

(

P · Q + i
√

P 2Q2 − (P · Q)2
)

.

(4.49)

Thus, the saddle point labelled by (n1, n2, j,m
1,m2) with j odd and

∆(M) = 1 , 0 ≤ m1 < n2 , −n2 < n1 ≤ 0, 1 ≤ j < 2n2 , (4.50)

contributes to the degeneracies of N = 4 in the semi-classical limit as

(−1)P ·Q (P 2)1−k

r2−kn2[P 2Q2 − (P · Q)2]1−
k
2 g(ρ∗0, σ

∗
0)

(

iπP 2 +
(r2

2∂ρ∗0 + r2
1∂σ∗0 )g(ρ∗0, σ

∗
0)

g(ρ∗0, σ
∗
0)

)

eS⋆ (4.51)

When n2 = |j| = 1 and therefore n1 = m1 = m2 = k2 = α = δ = 0, r = −k1 = 1, the

exponent S∗ in (4.47) reproduces the Bekenstein-Hawking entropy of the dyonic black hole.
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The prefactor in (4.51) leads to logarithmically and power suppressed corrections to the

entropy which are consistent with the contributions of the R2-type quantum corrections to

the Wald entropy [11]. In fact, the values of (ρ0, σ0) in (4.49) are equal to the attractor

values of the axio-dilaton (S,−S̄), and the functions g1, g2 are precisely the ones which

govern the R2 corrections to the four-dimensional effective action [35, 36]. This agreement

continues to hold off-shell [11], as outlined in appendix B.

Instead, contributions with n2 > 1 are exponentially suppressed compared to those

with n2 = 1. They agree qualitatively with the semi-classical contributions of subleading

AdS2 saddle points (3.35) computed in section 3 (strictly speaking for n1, n2 coprime only).

While (3.35) involved only one discrete quantum number d conjugate to a single charge

q, (4.47) displays the contributions of three discrete quantum numbers n1,−j/2,−m1 con-

jugate to Q2/2, P ·Q,P 2/2, respectively. In the duality frame of the D1−D5−P −KKM

system on S1 × S1 × K3 with one unit of KK monopole charge, the quadratic invariants

Q2/2 = q, P · Q = l become equal to the momenta along the two circles, and so n1 and

j/2 may be viewed as the timelike component of the Kaluza-Klein gauge fields gµ5 and

gµ6 along the two circles. The third combination m1P 2/2 = m1Q1Q5 for either Q1 = 1 or

Q5 = 1 may be interpreted as a discrete Wilson line for the Ramond-Ramond one-form or

five-form. When n1, (j ± 1)/2,m1 and n2 are not relatively prime, the orbifold described

in section 3 is no longer freely acting, but nevertheless the saddle point action still retains

the same form (4.47).

In principle, it should also be possible to interpret the prefactor in (4.51) as the effect of

R2-type corrections around the subleading semi-classical geometry. For (n1, n2) coprime,

and therefore r1 = r2 = 1, the values of the “axio-dilaton” (ρ0, σ0) appearing as the

argument of the Hilbert modular function g are rescaled by a factor 1/n2 compared to the

values at the leading saddle point. If the heterotic coupling is weak in the attractor region,

one may approximate ln g(ρ∗0, σ
∗
0) ∼ 2πi(ρ∗0 + σ∗

0), which is reduced by a factor 1/n2 from

its value at (n1, n2) = (0, 1). This appears to be consistent with our identification of the

subleading saddle point as a Z/n2Z orbifold of the dominant solution. More generally, this

is consistent with the fact that the effective volume of the two-torus S1 × S1 is effectively

reduced by a factor n2 at the “very near horizon” r = 1. We do not know how to interpret

the additional shift proportional to k2, which breaks the reality relation ρ0 = −σ0. We

also explain in appendix B that the off-shell agreement with the entropy function which

was observed in [11] for the leading saddle point does not seem to extend to subleading

saddle points.

4.4 Poincaré series representation

We now consider the partition function (4.12) at fixed m = P 2/2. As explained be-

low (4.12), this is a meromorphic Jacobi form of weight k = −10 and index m, which

should be identified as the elliptic genus of the SCFT dual to 4D dyons. In the same way

as in section 4.3, the integral over σ can be evaluated by Cauchy’s residue formula, leading
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to

Zm(ρ, v) =
∑ 2πi(n′

2ρ + n′
1)

−k

r2g(ρ0, σ0)

(

2πim +
(r2

2∂ρ0 + r2
1∂σ0

)g(ρ0, σ0)

g(ρ0, σ0)

)

×

× exp

[

−2πim

(

m1ρ − m2

n2ρ + n1
+

n2v
2 − jv

n2ρ + n1

)] (4.52)

where the sum runs over all integers j, n1, n2, k1, k2, δ, r1, r2 (the condition 0 ≤ m1 < m2

fixes α uniquely, but its precise value is irrelevant). Fourier expanding the prefactor,

2πimg(ρ0, σ0) + (r2
2∂ρ0 + r2

1∂σ0
)g(ρ0, σ0)

r2 (g(ρ0, σ0))2
=
∑

N1,N2

cm,r1,r2(N1, N2) e2πi(N1ρ0+N2σ0) (4.53)

we obtain

Zm(ρ, v) = 2πi
∑

j,n1,n2,k1,k2,r1,r2,N1,N2,δ

(n′
2ρ + n′

1)
−k cm,r1,r2(N1, N2) eS (4.54)

where the exponent may be written, up to an additive integer, as

S
2πi

= − mn′
2v

2

n′
2ρ + n′

1

+
lv

n′
2ρ + n′

1

+
k2ρ + k1

n′
2ρ + n′

1

(

Ñ +
l2

4m

)

+
(

r2
2N1 + r2

1N2 − m
) δ

r
, (4.55)

where we have defined

l =
jm

r
+ r

(

N1

r2
1

− N2

r2
2

)

, Ñ =
1

2

(

N1

r2
1

+
N2

r2
2

− m

2r2

)

− (N1r
2
2 − N2r

2
1)

2

4mr2
(4.56)

The sum over δ ranging from 0 to r − 1 vanishes unless r2
2N1 + r2

1N2 − m is divisible by

r, in which case it produces an overall factor of r. To solve the congruence, let us choose

integers t1, t2 such that

m = r2
1t2 + r2

2t1 . (4.57)

Since r1 and r2 are coprime, they must divide N1 − t1 and N2 − t2, respectively:

N1 = t1 + r1N
′
1 , N2 = t2 + r2N

′
2 , (4.58)

where N ′
1, N

′
2 are integers. Moreover, using (4.29) and (4.57) , we can write

l = µ + 2mL , µ ≡ r2t1
j0 + 1

r1
− r1t2

1 − j0

r2
+ N ′

1r2 − N ′
2r1 , (4.59)

where µ is manifestly integer. Having defined µ in this way, one may further compute

N ≡ Ñ + µ2

4m ,

N =
1 + j0

2r1
N ′

1 +
1 − j0

2r2
N ′

2 +
(1 + j0)

2

4r2
1

t1 +
(1 − j0)

2

4r2
2

t2 , (4.60)

which is also manifestly integer.
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The sum over L produces a unary theta series (A.3) evaluated at ρ′ = (k2ρ+k1)/(n
′
2ρ+

n′
1), v

′ = v/(n′
2ρ + n′

1). Therefore, identifying

a = k2, b = k1 , c = n′
2 , d = n′

1 , (4.61)

we recognize the sum over poles (4.52) as a Poincaré series,

φm = φ(0)
m +

1

2

2m−1
∑

µ=0

∑

γ∈Γ∞\Γ

(cρ + d)−k e
− 2iπmcv2

cρ+d hµ

(

aρ + b

cρ + d

)

θm,µ

(

aρ + b

cρ + d
,

v

cρ + d

)

,

(4.62)

where φ
(0)
m denotes the contributions of the poles with (n1, n2) = 0, and

hµ(ρ) = 2πi r
∑

r1,r2,N ′

1
,N ′

2

cm,r1,r2(r1N
′
1 + t1, r2N

′
2 + t2) e

2πi

„

N− µ2

4m

«

ρ
(4.63)

where the sum runs over integers with a fixed value of µ mod 2m. Finally, the original

Siegel modular form Z may be recovered by resumming the Fourier series,

Z = Z(0) +
1

2

∑

m

2m−1
∑

µ=0

∑

γ∈Γ∞\Γ

(cρ+d)−k e
2πim

“

σ− cv2

cρ+d

”

hµ

(

aρ + b

cρ + d

)

θm,µ

(

aρ + b

cρ + d
,

v

cρ + d

)

(4.64)

To summarize, we have rewritten the sum over the five integers M = (m1,m2, j, n1, n2)

modulo the constraint ∆(M) = 1 into a sum over cosets
(

k2 k1
n2/r n1/r

)

∈ Γ∞\Γ, spectral flow

l = µ mod 2m, and quantum numbers r1, r2, N
′
1, N

′
2. The auxiliary integers s1, s2, t1, t2

are fixed in terms of m, r1, r2 by r1s2 − r2s1 = 1 and (4.57).

The Poincaré series (4.62) is our “Farey tale” expansion for the N = 4 dyon partition

function. It closely resembles the usual Farey tail expansion (A.5) for Jacobi modular

forms. While the sum (4.62) is not restricted to states satisfying the “cosmic censorship”

bound Ñ < 0, this restriction may be enforced by hand at no cost, since non-polar terms

(after properly regulating the sum) average to zero [9].

In detail however, the structure of (4.62) is considerably more intricate than (A.5). In

particular, the Fourier coefficients of the vector-valued modular form hµ(ρ) must take the

special form (4.63), where the coefficients cm,r1,r2(N1, N2) originate from expanding (4.53).

This structure ensures that the resulting sum (4.64) is (at least formally) a Siegel modular

form of weight k, for any choice of a Hilbert modular form g(ρ, σ) of weight 2 − k. In

fact, the series (4.64) is a Poincaré-type series for the Siegel modular group, where the sum

runs over the coset Γ1\Sp(2, Z), where Γ1 is the stabilizer of M1 = (0, 0, 1, 0, 0), i.e. the

Hilbert modular group. Thus, it should provide a lift from Hilbert modular forms to Siegel

modular forms with a pole on the diagonal divisor v = 0.

Unfortunately, in contrast to (A.5), our expansion (4.62) is formal, as we have not

attempted to regulate the sum over poles. In particular, we have little control over the

“degenerate contribution” Z(0), which is the part that remains once the contour in the

σ plane has been passed through all the poles with Imσ∗ > 0. This can in principle be
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determined from the “non-degenerate” contributions (n1, n2) 6= 0 by requiring that (4.64) is

Sp(2, Z) invariant. This degenerate contribution should reproduce the expected pole (4.19)

at v = 0, together with its images at v = m1ρ − m2. Thus, it is natural to expect that it

is given by the sum

∑

(m1,m2)∈Z2

1

(v − m1ρ + m2)2 g(ρ, σ − m1(m1ρ − m2))
, (4.65)

while φ
(0)
m will be given by the Fourier coefficients of this sum with respect to σ. It is

an interesting mathematical problem to turn our “Farey tale” into a precise mathematical

statement, and see whether additional constraints must be imposed on g(ρ, σ) to avoid

possible modular anomalies, in the spirit of [9].

Assuming that the Farey tale expansion can be made rigorous, it gives an alternative

representation of the Fourier-Jacobi coefficients of 1/Φ10 in terms of the Fourier coefficients

of the Dedekind modular form, as opposed to the standard Farey tail representation (A.5)

where hµ are directly related to the coefficients of the elliptic genus of K3 (4.7) via the

action of the Hecke operators (4.8). The agreement between the two representations implies

identities between these Fourier coefficients which would be interesting to spell out.

From the physics point of view, it should be possible to give a detailed macroscopic

interpretation of (4.62) as a sum over AdS2 geometries. We have offered an interpretation

of the exponent S∗ at the saddle point, but clearly more work remains to interpret the

prefactor especially when n1, n2 are not relatively prime. Moreover, it would also be de-

sirable to improve our understanding of the degenerate contributions, as they play crucial

role for consistency with wall-crossing [37]. Interestingly, this is tied with the fact that the

decomposition (A.2) for meromorphic forms involves vector-valued “mock” modular forms

rather than usual modular forms [38–40]. Hopefully, resolving these issues will shed some

light on the microscopic description of N = 4 dyons.
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A Review of the Farey tail expansion

For the reader’s convenience, we briefly summarize the Farey tail expansion of a weak

holomorphic Jacobi form φ(ρ, v) of weight k ≤ 0 and index m [9, 24]. Let c(N, l) be the

Fourier coefficients of φ,

φ(ρ, v) =
∑

N≥0,l∈Z

c(N, l) e2πi(Nρ+lv) . (A.1)
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Using spectral flow invariance, φ can be decomposed as

φ(ρ, v) =
2m−1
∑

µ=0

hµ(ρ) θm,µ(ρ, v) , (A.2)

where θm,µ is an index m unary theta series,

θm,µ(ρ, v) =
∑

l∈Z, l=µ mod 2m

e
2πi

“

l2

4m
ρ+lv

”

, (A.3)

and hµ(ρ) is a vector valued modular form

hµ(ρ) =
∑

N∈Z

cµ(4mN − µ2) e
2πi

„

N− µ2

4m

«

ρ
(A.4)

where cµ(4mN −m2) ≡ (−1)2mlc(N, l) for l = µ mod 2m. Note that the holomorphy of φ

with respect to v is essential: if φ has poles in the v-plane, hµ(ρ) are only “mock” modular

forms, and (A.2) has to be supplemented an extra term [38].

The Farey tail expansion of φ can be obtained by replacing hµ(ρ) in (A.2) by its

Rademacher expansion. In this way one obtains the Poincaré series representation

φm =
1

2
hµ

(

µ2

4m

)

θµ(ρ, v) +
1

2

2m−1
∑

µ=0

∑

γ∈Γ∞\Γ

(cρ + d)−k e
− 2iπmcv2

cρ+d

× h−
µ

(

aρ + b

cρ + d

)

θm,µ

(

aρ + b

cρ + d
,

v

cρ + d

)

(A.5)

where h−
µ is the regularized polar part,

h−
µ (ρ) =

∑

N ;4mN−µ2<0

cµ(4mN − µ2) e
2πi

„

N− µ2

4m

«

ρ
R

(

2πi|N − µ2|
4m

c(cρ + d)

)

(A.6)

and R(x) is a regularizing factor, such that R(x) → 1 exponentially fast at x → ∞. The

sum runs over γ =
(

a b

c d

)

where (c, d) = 1 and (a, b) is any one of the solutions of ad−bc = 1.

It may be regularized by restricting to |c| ≤ K, |d| ≤ K and letting K → ∞ at the end.

Note that due to the regularization, the Poincaré sum for arbitrary choices of the polar

coefficients cµ and multiplier system may not be modular invariant. It is possible however

to supplement it with a non-holomorphic term so as to restore modular invariance [9].

B Subleading contributions to the entropy function

In this appendix, we evaluate (4.9) by a more standard procedure [11, 15], which is to first

perform the integral over v using Cauchy residue’s formula, and then treat the integral over

ρ, σ by saddle point methods. The advantage is that, keeping only the term with n2 = 1

in the first step, and identifing (ρ, σ) with the axio-dilaton S = S1 + iS2 according to via

ρ =
i

2S2
, σ =

i(S2
1 + S2

2)

2S2
, (B.1)
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the integrand may be recognized as the exponential of the macroscopic entropy function,

with contributions from R2-type corrections to the 4D low energy effective action [41].

This off-shell agreement between the microscopic partition function and the macro-

scopic geometry is quite remarkable. However, it does not seem to extend to exponentially

suppressed corrections with n2 > 1. Indeed, at the pole v = v+ in (4.39), the exponent

in (4.9) becomes

S =
π

2S2
|Q − τP |2 − iπν P · Q , (B.2)

with

ν =
j

n2
+

iS1

S2
− 1

n2S2

√

S2
2 − (n2 − 2in1S2)(n2(S

2
1 + S2

2) + 2im1S2) , (B.3)

while the arguments of the Hilbert modular form g(ρ0, σ0) appearing in (4.36) are given by

ρ0 =
(1 + j)r2k2

2r1n2
+

ir2
2

n2(n2 − 2in1S2)

(

S2 +
√

S2
2 − (n2 − 2in1S2)(n2(S2

1 + S2
2) + 2im1S2)

)

σ0 =
(1 − j)r1k2

2r2n2
+

ir2
1

n2(n2 − 2in1S2)

(

S2 −
√

S2
2 − (n2 − 2in1S2)(n2(S2

1 + S2
2) + 2im1S2)

)

(B.4)

Thus, the integrand in the ρ, σ integral can be written as e−F where

− F =
π

2S2
|Q − τP |2 − iπP · Q (ν − 1) − log g(ρ0, σ0) + . . . (B.5)

where the ellipses stand for other contributions to the residue at v = v±. For the leading

order contribution with (n1, n2) = (0, 1), (B.3) and (B.4) reduce to

ν = 1 , ρ0 = −S1 + iS2 , σ0 = S1 + iS2 , (B.6)

and F is recognized as entropy function of the four-dimensional black hole, including the

effect of the R2-type corrections with depence on the axio-dilaton S [11, 15]. For n2 > 1,

this interpretation of the (ρ, σ) integral seems to break down.
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